Technology is constantly changing and evolving to enable more efficient operations. Particularly in the world of IoT (Internet of Things), solutions continually evolve – from how we drive cars, listen to music, and even keep track of our stuff.  When thinking about IoT connectivity solutions such as Bluetooth, there has been a steady progression of technological advancement.

In recent years, classic Bluetooth has further advanced into what is known as Bluetooth Low Energy (LE).  Bluetooth LE remains in sleep mode until a system initiates a connection, allowing the technology to be very power efficient – a single battery can last up to five years depending on the use case.

In the realm of asset tracking and monitoring though, where the need to track an asset occurs multiple times a day, battery life is of the utmost importance.  That is why Link Labs created an even more advanced generation of industrial Bluetooth LE known as XLE®, short for Xtreme Low Energy, because of its ability for a single battery to last up to 7 years.  Let’s take a look at how Link Labs is fusing XLE® into its existing AirFinder Industrial OnSite solution.

So, how do Industrial Bluetooth LE and XLE® work for asset tracking?

Before we talk about XLE®, it is helpful to better understand Bluetooth. Bluetooth is a radio technology that transmits data within the 2.4 GHz band. However, if you know anything about the 2.4 GHz band, you know that many other technologies, such as Wi-Fi and ZigBee, used the same 2.4 GHz band. So how do Bluetooth devices avoid interference? The answer is short-range frequency hopping. Bluetooth operates within 80 different channels (number from 0 to 79, each 1 MHz wide) and changes channels up to 1600 times per second. Bluetooth devices detect other signals and negotiate a path for communication. 

IoT BLE vs. XLE for indoor asset tracking

When it comes to the AirFinder OnSite Bluetooth LE solution, Bluetooth LE beacons determine location by proximity, instead of phase ranging. When an active tag is within range, a nearby beacon can compute the signal strength and calculate the proximity. The only way to increase accuracy is to increase the density of beacons in the area. The precision is up to the closest beacon.

In contrast, AirFinder OnSite XLE® uses phase-ranging to determine location on x/y/z coordinates up to meter-level accuracy. Here is a breakdown of how it works.

  1. A Bluetooth LE asset tag sends a signal to any beacons within range
  2. Once a beacon receives a signal, it sends matching tones or frequencies back to that original tag. In other words, it is not about how much time it takes for that signal to travel back and forth; it is about the different phases of all returning frequencies
  3. When all the phases are collected, the system calculates the distance from the known location of that beacon
  4. Once the system has collected the known location from at least three beacons, it can triangulate the location of the tag
  5. The tag’s location data is sent to the AirFinder IoT platform for end-users to read and analyze the information in real time

Benefits of AirFinder XLE®

One of the biggest benefits of AirFinder XLE® is the level of precision.  Proximity-based systems require a location to be associated with a beacon and are accurate to the closest location beacon.  Industrial XLE®, on the other hand, can get to sub-meter accuracy in standard environments by using phase-ranging calculations.   

Here are some reasons to consider AirFinder’s Industrial XLE® Solution:

  • Wall-powered beacons won’t need battery replacements
  • Longer battery life for the tags (up to 5-7 years)
  • More accurate location reading 
  • Covers a larger area with fewer location beacons

Take the Next Step

From enhanced battery life to maintaining the same affordable solution, AirFinder OnSite XLE® is a clear choice for many companies. To see AirFinder OnSite XLE in action, book a demo today.

Jennifer Halstead

Written by Jennifer Halstead

Jennifer Halstead, MBA, CPA brings more than 20 years financial industry experience to Link Labs. She began her career in finance within the pharmaceutical industry and has continued in both public accounting and private companies. She passed the CPA exam with the 3rd highest score in the state and completed her MBA with an accounting concentration (summa cum laude). Jennifer has worked with several software companies and has led multiple venture financing, merger and acquisitions deals. She has helped companies expand internationally and has managed the finance department of a startup to 33 consecutive quarters of growth prior to acquisition. After the acquisition, she served as the Controller of Dell Software Group’s Data Protection Division where she managed a portfolio of multiple hardware and software products to scale and achieve over triple-digit growth worldwide in 18 months. Jennifer brings a depth of finance experience to the Link Labs team.

Related Blogs

Asset Tracking, BLE Asset Management Election Integrity, RTLS, asset tracking system, automation, Elections, legal concerns, chain of custody, mail-in ballot

How Counties Can Avoid Public Scrutiny During Elections

Asset Tracking, BLE Asset Management RTLS, supply chain, remote assets, gps, satellite, automation, Satellite GPS tracker

How Satellites Optimize Supply Chains and Logistics

Asset Tracking, BLE Asset Management Asset Tracking, RTLS Solution, RTLS, asset monitoring, rtls asset tracking, Utilization, process efficiencies, manufacturing, Downtime, historic data, predictive data

Why Monitoring Utilization Improves Process Efficiencies

Subscribe to Link Labs' blog weekly update!

Subscribe

Subscribe to Link Labs' blog weekly update!