This is part one of a three-part series comparing different types of wireless technologies. I’m sure you’ve heard of the differences between WiFi and Cellular (we’ll be covering those two today), and you know about Bluetooth and may have heard of Bluetooth Low Energy (LE), but to some of you, ZigBee vs. 6LoWPAN may sound a bit foreign.

All of these wireless technologies or protocols have different benefits and drawbacks when it comes to the Internet of Things (IoT). Each can help connect devices to one another for M2M communication, it just depends on what you’re trying to accomplish. At Link Labs, we’re building a new kind of long-range M2M wireless technology that will help solve new types of machine to machine communication challenges. But in this series, we’ll explain each technology and talk about how it relates to M2M or IOT communication. If you’re interested in the new technology we’re building, you can download our whitepaper here.

For part one, we’ll cover WiFi vs. Cellular for M2M communication:


WiFi is a local area network (LAN) that provides internet access within a limited range. You’ll know it as your home or office network, or a way to surf the web at the airport. Devices exchange data to the internet using 2.4 GHz UHF and 5 GHz SHF radio waves. There have been evolving standards for WiFI that you may have heard of, like “N” or “AC.” Each of these new standards improves performance in these very busy frequency bands.

Bandwidth is high which means that you can check email and stream video and audio easily from a phone, tablet, or computer if the signal strength is strong and you are close enough to the access point. With any wireless technology, there are tradeoffs. What WiFi lacks in range, it more than makes up for in speed and bandwidth.

WiFi’s M2M Applications

WiFi can be used for Internet of Things applications that run in a local environment, or in a distributed setting if “Wide Area WiFi” has been deployed:

  • Home security systems
  • Sensor-based lighting
  • Smart home thermostats
  • Smart streetlights
  • Parking meters

Barcelona is great example of smart city with city-wide WiFi access, which makes deploying M2M applications for citizens easy.


Cellular is a wide area network (WAN) that covers miles (actually it covers countries at this point). You are relying on cellular data networks when your phone company says you are consuming “data.” That means you’re connecting to the internet through a series of base stations that have fixed transceivers to receive and send radio waves. When you’re using your Google Maps app on the road or listening to music at the beach, it’s all happening through a cellular data network.

Each of these base stations offer radio coverage in a wide area, and then the total network of base stations can give you access across the United States, for example. Bandwidth is high (you can stream GPS directions, video, and audio just like WiFi) but it also depends on the coverage. Accessing cellular data, however, is more expensive than WiFi and other types of wireless networks we’ll discuss over the next few weeks.

Cellular’s M2M Applications

In regards to machine to machine communication (M2M), cellular networks can be used to connect high ROI devices. Power consumption is high, though, so the endpoint needs to be easily accessed. For example, it can’t be buried underneath a parking spot to detect if the spot is free because the battery would be chewed up in days. Here are some example use cases for M2M communication over cellular networks:

  • Asset tracking for transportation fleets
  • Keyless locking systems for cars, bikes, and more

And for businesses looking to add Cellular M2M to an application, get out your wallet! It generally costs about $30,000 to get a new device approved by the 3GPP, GCF, or PTCRB mafia...err, I mean...certification bodies.

WiFi vs. Cellular Comparison Chart


    WiFi   Cellular
  Network Type   Local Area Network (LAN)   Wide Area Network (WAN)
  Range   ~300 feet   Anywhere with signal
  Bandwidth (Data Rate)   High   Medium to high
  Battery Life   ~7 days   ~1-3 days
  Upfront Cost/Node   ~$25   ~$100
  Device Certification Costs   $0-10,000 (4 weeks)   $30,000+ (6-8 months)

When talking about WiFi vs. Cellular power consumption, it's clear that both bleed your battery quickly, although Cellular does more quickly. This is one of the main reasons that neither of these technologies work for M2M applications where you can't access the battery easily. That's why something like a low-power wireless sensor network isn't a fit for either of these options.

Check out our public networks page to learn more about the long-range M2M network we’re building in a few US cities. And make sure to check back in next week for a comparison between 6LoWPAN and ZigBee. If you're here to get some ideas, check out this article about M2M applications for agriculture (keep in mind, though, that the apps you see there aren't great fits for WiFi or Cellular). With that, we conclude our WiFi vs. Cellular breakdown… see you next week!


Written by Brian Ray

Brian is the Founder and CTO of Link Labs. As the chief technical innovator and leader of the company, Brian has led the creation and deployment of a new type of ultra long-range, low-power wireless networking which is transforming the Internet of Things and M2M space.

Before starting Link Labs, Brian led a team at the Johns Hopkins University Applied Physics Lab that solved communications and geolocation problems for the national intelligence community. He was also the VP of Engineering at the network security company, Lookingglass, and served for eight years as a submarine officer in the U.S. Navy. He graduated from the U.S. Naval Academy and received his Master’s Degree from Oxford University.

Related Blogs

Asset Tracking, BLE Asset Management healthcare, Asset Tracking, AirTag, RTLS, iiot, equipment and tool tracking, gps, manufacturing, logistics, cost effectiveness, Differentiation, Data Utilization

Recap: Why Choose Link Labs for Asset Tracking and Monitoring?

Asset Tracking, BLE Asset Management Scalability, Cloud Native Applications, containers, Flexibility, Resiliency, Dev Ops, microservices

Cloud Native Applications on the Rise

Asset Tracking, BLE Asset Management proof of delivery, logistics, efficiency, tracking, Omnichannel Tracking, Returnable assets, employee efficiency, sustainability, lower stock, production line shutdown

2022 IoT Logistics Trends

Subscribe to Link Labs' blog weekly update!


Subscribe to Link Labs' blog weekly update!